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Abstract. We study the mass, width and couplings of the lightest resonance multiplet with I(JPC) =
1(1−−) quantum numbers. Effective field theories based on chiral symmetry are employed in order to
describe the form factor associated with the two pseudoscalar matrix element of the QCD vector current.
The bare poles of the intermediate resonances are regularized through a Dyson–Schwinger-like summation.
We explore the role of the resonance width in physical observables and make a coupled-channel analysis
of the final-state interactions. This provides many interesting properties, like the pole mass Mpole

ρ =
764.1±2.7+4.0

−2.5 MeV. At energies E � 1 GeV, a second 1(1−−) resonance multiplet is considered in order to
describe the data in a more consistent way. From the phenomenologically extracted resonance couplings,
we obtain the chiral coupling Lr

9(µ0) = (7.04 ± 0.05+0.19
−0.27) · 10−3, at µ0 = 770 MeV, and show how the

running with the scale µ affects the resonance parameters. A 1/NC counting is adopted in this work and
the consistency of the large-NC expansion is tested. Finally, we make an estimation of the contribution
from diagrams with resonances in crossed channels.

1 Introduction

It has become evident that quantum chromodynamics
(QCD) is the correct theory to describe hadronic pro-
cesses [1]. In the high-energy region (E � 1 GeV) the the-
ory allows for a perturbative description and, accordingly,
many calculations up to several orders in the perturba-
tive expansion parameter αs have been performed. These
theoretical results have been successfully tested in many
high-energy experiments. Nevertheless, since the running
coupling constant αs(µ) increases as the energy decreases,
the perturbative expansion in powers of αs breaks down at
energies E ∼ 1 GeV. In this paper the problem of describ-
ing the E � 1 GeV region by employing effective theories
of QCD [2,3] will be analyzed.

When we study processes at energies much lower than
the heavy quark masses, the degrees of freedom corre-
sponding to heavy quarks decouple [4] and QCD, with
only the light quark fields, yields a proper description. In
the massless limit, the QCD lagrangian shows chiral sym-
metry: the left-handed and right-handed quark fields can
be rotated independently under the SU(nf )L ⊗ SU(nf )R
flavor chiral group, where nf is the number of light quarks.
The symmetry is spontaneously broken to the SU(nf )V
subgroup and n2

f − 1 massless Nambu–Goldstone bosons
appear, associated with the broken generators. Nonethe-
less, as the light quark QCD lagrangian has small non-zero
mass terms, chiral symmetry is also broken explicitly and
the Nambu–Goldstone bosons gain small masses. These
bosons have JP = 0− and are identified with the triplet
of pions, in the SU(2) case, and the (π, K, η8) octet of
light pseudoscalars for SU(3).

The low-energy chiral effective field theory describing
the dynamics of the lightest pseudoscalar multiplet was
first developed for the SU(2)L ⊗SU(2)R symmetry group
[5], and was later generalized to the three flavor SU(3)L ⊗
SU(3)R case [6]. We will use the latter in order to include
kaon interactions in our study. Chiral perturbation theory
(χPT) [5–9] describes the physical low-energy amplitudes
as an expansion in powers of quark masses and momenta
over a characteristic chiral scale: Λχ � 4πfπ ∼ 1 GeV,
with fπ = 92.4 MeV the pion decay constant.

The expansion in powers of momenta over Λχ deteri-
orates as the energy of the process is increased and, in
order to reach the relevant accuracy, one needs to add
higher and higher chiral orders to the χPT lagrangian. In
the resonance region one must introduce a different effec-
tive field theory with explicit massive fields to describe
the degrees of freedom associated with the mesonic res-
onances. In the eighties, Gasser and Leutwyler worked
out an SU(2)L ⊗ SU(2)R lagrangian describing the pi-
ons and the vector resonance ρ(770) [5]. Later on, this
work was extended to the nf = 3 case [10], developing
the resonance chiral theory (RχT). Further studies on the
RχT and χPT lagrangians constrained the resonance chi-
ral couplings, employing the QCD short-distance behavior
of appropriate Green functions [11].

Once the resonance fields are explicitly included in the
effective lagrangian, the chiral counting becomes ineffec-
tive because the masses of these resonances are of the same
order as the chiral characteristic scale Λχ. However, an ex-
pansion of QCD and its low-energy effective field theory
in powers of 1/NC , with NC the number of quark colours,
appears to be suitable [12]. In the large-NC limit, the
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hadronic description reduces to tree-level processes with-
out hadron loops. As the 1/NC expansion seems to yield
a proper description of NC = 3 QCD, it seems also ap-
propriate to expand the RχT results in powers of 1/NC

[13]. To a certain extent, this reduces to just counting the
number of loops.

At leading order (LO) in 1/NC , RχT yields a good
description of many phenomena. However it fails when
the energy approaches the bare mass of a resonance. This
situation is common to every unstable propagating state
in a quantum field theory when its propagator turns on-
shell. It is solved by the Dyson–Schwinger summation of
one particle insertion blocks (1PI), which provides the un-
stable particles with an imaginary absorptive part in the
resonance propagator. This summation must also be done
in RχT, with some prescriptions, but essentially in the
same way. In [14,15] the ρ-channel was studied and an
appropriate off-shell width for the ρ(770) resonance was
obtained.

In this paper we continue the work put forward in
[15], extending it to a coupled-channel analysis. We will
study the vector form factor (VFF) [14–18] and overview
the correlator of two QCD vector currents and the cor-
responding partial-wave scattering amplitude. It will be
shown that our coupled-channel description of the reso-
nance width agrees with the one in [15], obtained with
a single-channel treatment. From the Dyson–Schwinger
summation, we find that the rescattering dresses the bare
propagator in a universal way. The induced correction only
depends on the intermediate 1PI blocks and not on the fi-
nal or initial states of the process.

We briefly describe the basic ingredients of the RχT
effective action in Sect. 2. The Dyson–Schwinger analy-
sis of the different observables is performed in Sect. 3. In
Sect. 4 the obtained results are matched to the O(p4) χPT
description and compared with the data in Sect. 5. The
χPT coupling Lr

9(µ) is calculated here and a test of the
1/NC expansion is also performed. The small corrections
induced by resonance exchanges in the t-channel are es-
timated in Sect. 6. Our conclusions are finally given in
Sect. 7. Some technical details have been relegated to the
appendices. In particular, a generalized formal summation
of diagrams with two-body topologies is presented in Ap-
pendix C.

2 Resonance chiral theory

We will work with the SU(3) octet of light pseudoscalar
bosons, interacting through the O(p2) χPT lagrangian [6,
10]

L(2)
χPT =

f2

4
〈uµuµ + χ+〉, (1)

where 〈...〉 is short for the trace over flavor matrices and
f ≈ fπ is the pion decay constant at lowest order. The
tensors uµ = i[u†(∂µ − irµ)u − u(∂µ − ilµ)u†] and χ+ =
u†χu† + uχ†u are functions of the left, right and scalar
external sources lµ, rµ and χ [5,6]. The pseudoscalar fields

Φ =




π0
√

2
+

η8√
6

π+ K+

π− − π0
√

2
+

η8√
6

K0

K− K
0 −2η8√
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 (2)

are parameterized through the SU(3) matrix u ≡ exp[i/
(f

√
2)Φ].
The interactions of the Nambu–Goldstone bosons with

the lightest multiplet of vector resonances

Vµν =
λa

√
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are given by [10]

LV
RχT =

FV

2
√

2
〈Vµνfµν

+ 〉 + i
GV√

2
〈Vµνuµuν〉, (4)

where
fµν
+ = uFµν

L u† + u†Fµν
R u,

with Fµν
L,R the field strength tensors of the left and right

external fields [5,6]. We use the RχT lagrangian in the
antisymmetric formalism provided in [10]. It was demon-
strated in [11] that this antisymmetric description of the
vector fields is equivalent to the more usual Proca formal-
ism plus the O(p4) χPT lagrangian with its couplings Li

constrained by the short-distance QCD behavior.
In general, one should consider a set of vector reso-

nance multiplets V
(i)
µν with couplings FVi

and GVi
. At low

energies (s1/2 � 1.2 GeV), the lightest multiplet yields the
dominant contributions. However, the tail of the second
nonet may generate sizable corrections which must also
be taken into account in the s1/2 ∼ 1 GeV region.

3 The vector form factor

Let us consider the hadronic matrix element correspond-
ing to the production of two pseudoscalars with I = J = 1
through the charged d̄γµu vector current:

〈P−(p1)P 0(p2)|d̄γµu|0〉 =
√

2 (p1 − p2)
µ F (P)(q2), (5)

with q = p1 + p2. The label P denotes the pair of pseu-
doscalars which are produced in the final state, either
π−π0 or K−K0. The Lorentz structure is fixed by cur-
rent conservation in the isospin limit.

At leading order in 1/NC , the vector form factor
F (P)

0 (q2) is easily computed through the diagrams shown
in Fig. 2a. We put together the two F (P)

0 (q2) functions in
the vector

�F0(q2) ≡
(

F (π)
0 (q2)

F (K)
0 (q2)

)
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Fig. 1. VFF at leading order in 1/NC with one and two vec-
tor resonances. For the two resonance case we have adopted
the input parameters MV1 = 775 MeV, MV2 = 1450 MeV,
FV1GV1/f2 = 1.1 and FV2GV2/f2 = −0.1. Data are from
ALEPH [19] and NA7 [20]

=

{
1 +

∑
i

FViGVi

f2

q2

M2
Vi

− q2

} 1

− 1√
2


 . (6)

The requirement that the vector form factor should vanish
at infinite momentum transfer constrains the resonance
couplings at LO in 1/NC to satisfy the short-distance
QCD relation [11,13]

1 −
∑

i

FViGVi

f2 = 0. (7)

If only one vector multiplet is considered, then FV1GV1/
f2 = 1 and one gets the familiar vector-meson dominance
expression

�F0(q2) =
M2

V1

M2
V1

− q2


 1

− 1√
2


 . (8)

This yields a rather good description of the data in the
region (q2)1/2 � 0.7 GeV, below the ρ(770) peak. Chiral
loop corrections are subleading in the 1/NC counting and
turn out to be rather small in this case. Other resonances
can also be included. The relevance of the large-NC ex-
pansion to approximate the physical vector form factor is
clearly seen in Fig. 1, either with just one resonance or
including a second multiplet.

The vector couplings are as well constrained in the
large-NC limit by the relation

∑
i

2FViGVi − F 2
Vi

M2
Vi

= 0, (9)

provided by the short-distance QCD conditions over the
axial form factor [11,13].

For the simplest situation with a single resonance ex-
change, the short-distance QCD constraints yield FV1 =

= +

(a)

= +

(b)

Fig. 2a,b. Effective vertices for the vector current insertion
producing two pseudoscalars a and for the two pseudoscalar
scattering b. The first terms come from L(2)

χPT and the second
ones from the interaction via an intermediate resonance due to
the LV

RχT lagrangian

2GV1 = 21/2f in the large-NC limit [11]. However, since we
are going to work at higher orders in 1/NC , we will leave
these couplings free and will test afterwards the devia-
tion of their experimental values from the large-NC pre-
dictions, that we expect to be small.

3.1 Dyson–Schwinger summation

At energies close to the mass of a resonance we need to
know the denominator of the resonance propagator be-
yond the leading, bare, order in 1/NC . What is usually
done is a Dyson–Schwinger summation, as for instance
in the QED photon polarization. That is, summing di-
agrams composed by a series of propagator, 1PI block,
propagator, . . . , and so on. This summation regularizes
the pole of the bare propagator. It gives a self-energy with
its corresponding absorptive part, up to the perturbative
order employed for the 1PI block. In RχT, however, at the
same order as the resonance-exchange contribution there
is also a local interaction from the L(2)

χPT lagrangian. The
Dyson–Schwinger summation must be then slightly modi-
fied. One constructs effective current vertices and effective
scattering vertices [15], by adding the contribution from
intermediate resonance exchanges in the s-channel to the
local χPT interaction L(2)

χPT. Both contributions are of the
same order in the 1/NC counting. These effective vertices,
shown in Fig. 2, are independent of the explicit formula-
tion adopted for the spin-1 fields [11,15]. If we use the
Proca formulation we have to take into account the local
interaction from the O(p4) χPT lagrangian as it is de-
scribed in [11]. The inclusion of the local vertices is not
important on the resonance peak but it becomes relevant
away from it.

For the moment, we are only interested in the imag-
inary part of the self-energy. Therefore, we will concen-
trate on the sum over diagrams with absorptive cuts. For
the range of energies we are interested in, the most rel-
evant contributions come from intermediate states with
two pseudoscalars; states with a higher number of parti-
cles being suppressed by phase space and chiral counting.
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Fig. 3. Diagrammatic summation at N loops

Thus, we are going to sum diagrams1 constructed with an
initial effective current insertion connected to an effective
scattering vertex through a two pseudoscalar loop. The
pair of outgoing pseudoscalars from the scattering vertex
are again connected to another effective scattering vertex
through another two pseudoscalar loop, and so on, as it
can be seen in Fig. 3.

The off-shell effective current vertex shows the momen-
tum structure

�V µ
0 =

√
2
[
�F0P

µν
T + �F ′

0P
µν
L

]
(p1 − p2)ν , (10)

with Pµν
T = gµν − (qµqν/q2) and Pµν

L = qµqν/q2 the
usual transverse and longitudinal Lorentz projectors. In
the isospin limit, the second term with �F ′

0 vanishes when
the outgoing pseudoscalars are both on-shell. Notice that
this off-shell function depends on the adopted parameter-
ization of the fields, but the final on-shell amplitude does
not depend on it.

When the current insertion �V µ
0 is connected to a suc-

cessive number of loops and effective scattering vertices
one gets �V µ

N =
√

2
[
�FNPµν

T + �F ′
NPµν

L

]
(p1 − p2)ν , where

N is the number of intermediate loops in the diagram-
matic chain shown in Fig. 3. Thus the momentum struc-
ture remains. Inductively, from N to N + 1 loops we can
observe the linear recurrence F (i)

N+1 =
∑

j MijF (j)
N , where

i = 1 stands for ππ and i = 2 for KK. This feature can
be expressed in the matrix form

�FN+1 = M �FN = M2 �FN−1 = · · · = MN+1 �F0, (11)

with �FN the vector form factor at N loops. The 2 × 2
recurrence matrix takes the form

M = −Σ−1T s
LOΣ−1(192πB22), (12)

with the diagonal matrix Σ =diag(σπ, σK), where σP =
(1 − 4m2

P/q2)1/2. The matrix

T s
LO =

q2

96πf2

{
1 +

∑
i

2G2
Vi

f2
q2

M2
Vi

− q2

}

× Σ




1 − 1√
2

− 1√
2

1
2


Σ, (13)

1 This diagrammatic construction solves the Bethe–Salpeter
equation [21] in an iterative way. The effective vertices provide
the corresponding “potentials” at LO in 1/NC

is the s-channel partial-wave scattering amplitude with
I = J = 1, at LO in 1/NC [Fig. 2b]. The diagrams with
resonances in the crossed channels produce a tiny contri-
bution which will be taken into account in Sect. 6. We can
also observe in (12) the diagonal matrix B22 =diag(B(π)

22 ,

B
(K)
22 ), with the two-propagator Feynman integral B

(P)
22

given in Appendix A.
Summing the result in (11) for any number of loops,

one gets a geometrical series which can be easily handled:

�F =
∞∑

N=0

�FN =

( ∞∑
N=0

MN

)
�F0 = (1 − M)−1 �F0

=
1

1 − tr(M)
�F0. (14)

The last identity is not trivial. The Σ−1T s
LOΣ−1 matrix

is proportional to a dimension-one projector and �F0 is
an eigenvector of this projector. Thus, MN acting over
�F0 reproduces again the vector �F0 times a number. The
mathematical details can be found in Appendix B.

Later a more complete calculation of the form factor
will be performed. At the moment only the absorptive di-
agrams have been included and only the imaginary part is
under control. Moreover, let us consider the simplest case
of a single resonance exchange. The factor 1/(1 − tr(M))
together with the initial �F0 generates a complex denomi-
nator M2

V1
− q2 − ξ(q2): a non-controlled real part plus a

well-defined imaginary term, given by

Imξ(q2) = Imξπ(q2) + ImξK(q2). (15)

The bubble loop summation provides an imaginary con-
tribution which gets separate contributions from the ππ-
and KK-channels. The corresponding partial widths are
provided by

ImξP(q2) = CP

(
M2

V1
− q2 +

2G2
V1

f2 q2
)

× q2σ3
P

96πf2 θ(q2 − 4m2
P), (16)

with Cπ = 1 and CK = 1/2. When we substitute the
coupling at LO in 1/NC , GV1 = f/(21/2), these imaginary
terms Im ξP(q2) agree with the partial widths MρΓ

(P)
ρ (q2)

obtained in [14,15] from a simplified single-channel anal-
ysis. This energy dependence for the width was long ago
considered by Gounaris and Sakurai from general argu-
ments [22]. Also, they had exactly the same logarithm in
their work as the one which naturally appears in our calcu-
lation of the absorptive contribution through the Feynman
integral B

(P)
22 .

The correlator of two vector currents and the I = J =
1 partial-wave scattering amplitude can be computed in
a similar way. For the correlator we begin with a current
effective vertex, like for the form factor, and connect it to
a N -loop final-state interaction, which ends into another
current effective vertex. For the scattering amplitude we
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start from a scattering effective vertex and go on con-
necting loops and scattering vertices in the same way. A
similar rescattering effect appears in the three quantities.
The resulting (s-channel) I = J = 1 scattering amplitude
takes the form

T = Σ

( ∞∑
N=0

MN

)
Σ−1T s

LO = Σ (1 − M)−1
Σ−1T s

LO

=
1

1 − tr{M}T s
LO. (17)

The matrix structure (1 − M)−1 only depends on the
scattering effective vertex and on the two intermediate
particle loop. As these are identical for the three quanti-
ties (VFF, correlator and scattering), the final-state inter-
action dresses the bare resonance pole in a universal way,
providing the same complex pole for all processes.

4 Low-energy matching conditions

All the former calculations must reproduce the QCD low-
energy behavior provided by the χPT framework. This
allows one to fix the polynomial ambiguities at a given
order in the chiral expansion. We can identify the mo-
mentum expansion up to O(E4) of the resummed vector
form factor (14) with the standard O(E4) χPT calcula-
tion in the usual MS − 1 scheme [23]. At leading order in
1/NC , we have the well-known relation [10,13]

L9|NC→∞ =
∑

i

FViGVi

2M2
Vi

, (18)

with FVi
, GVi

and MVi
the bare parameters of the RχT

lagrangian.
Keeping 1/NC corrections, the O(E4) matching deter-

mines the regularized function B
r,(P)
22 , up to the considered

chiral order, to be [14–16]

B
r,(P)
22 =

1
192π2

[
σ3

P ln
(

σP + 1
σP − 1

)
+ ln

(
m2

P

µ2

)

− 5
3

+
8m2

P

q2

]
− 2

3
δLr

9(µ), (19)

where δLr
9(µ) ≡ Lr

9(µ) − L9|NC→∞. The renormalization
scale dependence of the O(E4) χPT coupling Lr

9(µ) can-
cels with the term ln

(
m2

P/µ2
)
. The resulting vector form

factor from (14) takes then the form

�F =

1 +
∑

i

FViGVi

f2

q2

M2
Vi

− q2

1+

(
1 +

∑
i

2G2
Vi

f2

q2

M2
Vi

− q2

)
2q2

f2

[
B

r,(π)
22 +

1
2
B

r,(K)
22

]

×


 1

− 1√
2


 . (20)

With the information obtained from the VFF we also
obtain the (s-channel) I = J = 1 partial-wave scattering
amplitude,

T =

q2

96πf2

(
1 +

∑
i

2G2
Vi

f2

q2

M2
Vi

− q2

)

1+

(
1+
∑

i

2G2
Vi

f2

q2

M2
Vi

− q2

)
2q2

f2

[
B

r,(π)
22 +

1
2
B

r,(K)
22

]

×




σ2
π −σπσK√

2

−σπσK√
2

σ2
K

2


 , (21)

with B
r,(P)
22 being the same as in the VFF due to the op-

tical theorem.

4.1 Scale running

When the low-energy matching was performed, the un-
fixed δLr

9(µ) parameter was left. It appeared as an ex-
tra constant in B

r,(P)
22 . This also pointed out an ambigu-

ity in the election of the scale and in the renormaliza-
tion scheme, usually MS − 1 but not the unique one. For
simplicity we will analyze this feature in the single reso-
nance case and with the leading values of the couplings,
FV1 = 21/2f = 2GV1 . In this situation the VFF, for in-
stance, becomes

�F =
M2

V1

M2
V1

− q2 +
2M2

V1
q2

f2

(
B

r,(π)
22 +

1
2
B

r,(K)
22

)

 1

− 1√
2




=

{(
M2

V1
(µ)

)/(
M2

V1
(µ) − q2 +

2M2
V1

(µ)q2

f2

×
(

B
r,(π)
22 +

1
2
B

r,(K)
22

)∣∣∣∣
δLr

9(µ)=0
+ O(q2/N2

C)

)}

×


 1

− 1√
2


 , (22)

where

M2
V1

(µ) = M2
V1

(
1 −

2δLr
9(µ)M2

V1

f2

)
. (23)

The second line in (22) is easily obtained by multiply-
ing the numerator and denominator with the factor (1 −
2δLr

9(µ)M2
V1

/f2). After introducing this definition, δLr
9(µ)

shuffles from B
r,(P)
22 to the parameter M2

V1
(µ). Thus in-

stead of two independent constants, δLr
9(µ) and M2

V1
, we

only have the combination M2
V1

(µ) replacing everywhere
the parameter M2

V1
. The term δLr

9(µ) disappears from
B

r,(P)
22 , hence leaving in the regularized Feynman integral

an explicit dependence on µ. Moreover, the use of M2
V1

(µ)
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in (18) allows us to recover the whole value of the χPT
running coupling

Lr
9(µ) = Lr

9|NC→∞ + δLr
9(µ) � f2

2M2
V1

(µ)
, (24)

up to the considered order. Therefore the parameter
M2

V1
(µ) captures the right dependence of Lr

9(µ) on the
renormalization scale. In our phenomenological analysis,
we will adopt the usual reference value µ0 = 770 MeV.
Later on we will perform numerical studies at different
scales µ and will examine the corresponding values of
Lr

9(µ) derived through (24). The prescription of eliminat-
ing δLr

9(µ) from B
r,(P)
22 is assumed in the following.

When studying the experimental data, we will observe
that the couplings FV1 and GV1 are not exactly the ones
provided by the large-NC limit, but they have small devia-
tions. These parameters suffer also slight variations when
more than one resonance is taken into account. In that
case, the scale dependence does not go in such a straight-
forward way to the parameter MV1(µ) as we have seen in
(23), although the relation is still obeyed within a given
accuracy. The other parameters are going to suffer very
tiny modifications with the scale but, at the precision of
our study, they remain like constants.

5 Phenomenology

We are going to analyze the experimental data for the vec-
tor form factor, which is much cleaner than the one from
ππ scattering. The vector form factor can be experimen-
tally tested in the photoproduction of pseudoscalars from
e+e− annihilation or in τ decay. Although there are many
data from e+e− [20,24], we have decided not to consider
them, as we have not taken into account the ω–ρ mixing.
We have studied the τ → ντ2π data from ALEPH [19],
which provides a covariance matrix to account for exper-
imental error correlations. Similar data from CLEO [25]
and OPAL [26] are also available.

The range of validity up to which we will extend our
fit is at most (q2)1/2 ≤ 1.2 GeV. Beyond this energy,
multiparticle channels become important. First we per-
form a fit to the modulus of the VFF (ALEPH data)
with the ρ(770) resonance only. This yields the param-
eter MV1(µ) and the couplings FV1 and GV1 . We choose
as matching scale µ0 = 770 MeV, take the pion decay con-
stant f = fπ = 92.4 MeV as an input, and fit the region
2mπ ≤ s1/2 ≤ Λmax = 1.2 GeV. We obtain the values
shown in Table 1, with a χ2/dof = 24.8/25. The corre-
sponding VFF is shown in Fig. 4. In order to estimate the
systematic errors, we have varied the chiral parameter f
in the interval f = 92.4 ± 1.0 MeV and the final point of
the fit Λmax between 1.0 and 1.2 GeV. All these effects
yield a more conservative result with a broader error. The
first error in Table 1 is the one provided by MINUIT [27],
while the second is our estimated systematic uncertainty.

Besides the lagrangian parameter MV1(µ), we can
determine the more usual “physical” masses: the Breit–

++++++++++++++++++++++++++++++++++++++++
+
+
+

+

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2

s/√|s| (GeV)

−0.5

0

0.5

1

1.5

lo
g 10

(|F
v(

s)
|²)

 

ρ(770)
ρ(770) + ρ(1450)
ALEPH
NA7+

Fig. 4. VFF fits for s1/2 < 1.2 GeV to the τ → ντ2π ALEPH
data [19], with one and two ρ resonances. e+e− → 2π data
points from NA7 [20] are also shown

Wigner mass MBW and the pole mass Mpole
ρ . The energy

where the phase-shift φππ = π/2 defines the Breit–Wigner
mass MBW and the corresponding width is given by

1/ΓBW = MBW
dφππ

ds

∣∣∣∣
s=M2

BW

;

see [22]. The complex pole of the observables in the second
Riemann sheet, spole

ρ = (Mpole
ρ − iΓ pole

ρ /2)2, defines the
alternative pole parameters.

In Table 1 we have written the resulting values for
these two different mass and width definitions. In order
to derive those numbers, we have taken into account the
correlations among the fitted parameters MV1(µ0), FV1

and GV1 . Owing to the off-shell q2 behavior of the de-
nominator, the pole mass turns out to be lower than the
Breit–Wigner mass, in agreement with former works [28].
The opposite behavior would have been obtained from a
constant Breit–Wigner width parameterization.

In Fig. 5 we plot the phase-shift φππ. In the low-energy
region s1/2 � 0.7 GeV, the experimental data appears to
be slightly above the predicted values. The same behav-
ior can be observed in previous theoretical studies [14,16,
17,29,30]. The experimental errors are probably underes-
timated in this region, although higher-order chiral cor-
rections could induce small variations to our predictions.
Other studies [28] seem to have a better control of the
region closer to the ππ threshold and dominated by the
χPT constraints. Beyond this region the agreement of our
one resonance analysis with the scattering data is good
up to (q2)1/2 ≤ 1 GeV. Above this point the prediction
for the scattering amplitude begins to fail.

In order to better study the region around s1/2 ∼
1 GeV, we include a second vector multiplet with the
ρ(1450). The effect of the tail of the ρ(1450) can mod-
ify slightly the distribution in this region, where still the
ρ(770) dominates. Nonetheless, we cannot study energies
much higher than s1/2 ∼ 1.2 GeV, since some not well-
known strong inelasticities do arise (the experimental
phase-shift data does not seem to pass through 3π/2 at
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Table 1. Determination of some RχT and χPT couplings, at the scale µ0 =
770 MeV, from the VFF fit. The parameters FV1/f and GV1/f have the same sign
as FV1GV1/f2 > 0

Chiral coupling ρ(770) ρ(770) + ρ(1450)

MV1(µ0) 845.4 ± 1.1+0.8
−2.8 MeV 839.4 ± 1.4+0.9

−2.3 MeV
|FV1/f | 1.696 ± 0.008+0.010

−0.028 1.669 ± 0.008 ± 0.017
|GV1/f | 0.695 ± 0.004+0.011

−0.019 0.670 ± 0.005+0.012
−0.016

FV1GV1/f2 1.178 ± 0.010+0.009
−0.004 1.119 ± 0.012+0.008

−0.018

Lr
9(µ0) =

∑
i

FViGVi

2M2
Vi

(µ0)
(7.04 ± 0.05+0.19

−0.27) · 10−3 (6.79 ± 0.09+0.19
−0.27) · 10−3

MBW 776.0 ± 1.6+0.3
−0.7 MeV 773.9 ± 2.0+0.3

−1.0 MeV
ΓBW 156.2 ± 1.6+0.3

−3.0 MeV 150.2 ± 2.0+0.7
−1.6 MeV

Mpole
ρ 764.1 ± 2.7+4.0

−2.5 MeV 770 ± 3 ± 3 MeV
Γ pole

ρ 148.2 ± 1.9+1.7
−5.0 MeV 137.3 ± 2.6 ± 2.6 MeV

the ρ(1450) mass [31]). Clearly, the two pseudoscalar loops
cannot incorporate all the inelasticity needed to describe
the ρ(1450) region. Other multiparticle intermediate
states may be responsible for this large effect.

We have fitted our theoretical determination of the
scattering amplitude with two resonances to the experi-
mental phase-shift in the region 0.7 GeV≤ s1/2 ≤ 1.2 GeV.
The fit is not very sensitive to the ρ(1450) mass, allow-
ing a wide range of values. Nevertheless, it requires that
MV2(µ0) � 1550 MeV. Taking MV2(µ0) = 1550 MeV, the
fit to the phase-shift gives MV1(µ0) = 841.8 ± 0.6 MeV,
GV1/f = 0.6631 ± 0.0027 and GV2/f = 0.373 ± 0.028,
with χ2/dof = 18.8/22. The fitted value of GV2/f in-
creases for larger masses of the ρ(1450) resonance; the
central value grows to 0.57 for MV2(µ0) = 2000 MeV.
The precision of GV1/f is improved, as expected, because
the phase-shift has a larger sensitivity to this parame-
ter. The differences between the analyses of φππ with one
and two resonances are tiny for s1/2 � 1 GeV. Beyond
s1/2 � 1.2 GeV, the description breaks down because the
pathological (π/2)(2n + 1) behavior of the phase-shift in
the neighborhood of the ρ(1450) still remains [see Fig. 5].

We have performed next another fit to the VFF
ALEPH data, with two vector multiplets and taking
Λmax = 1.2 GeV. Since in this region the data have very
small sensitivity to the ρ(1450) mass and the coupling
GV2 , we introduce as an input the value of MV2(µ0) and
the corresponding coupling GV2 obtained from the phase-
shift fit. The results of this VFF fit, given in Table 1, have
a χ2/dof = 14.7/24. The systematic errors have been esti-
mated varying the pion decay constant in the interval f =
92.4±1.0 MeV and the value of MV2(µ0) in the range2 from
1550 to 2000 MeV, which implies GV2/f = 0.37±0.03+0.2

−0.0.
In this analysis we have also recovered the Breit–Wigner
and pole masses and widths for the ρ(770) meson. We have

2 Notice that the one resonance results indicate that MV(µ0)
is around 100 MeV larger than MBW or Mpole. The experimen-
tal situation of the ρ(1450) is rather unclear and it might be
possible that it has an even higher mass or that a strong in-
terference of two vectors, ρ(1450) and ρ(1700), is needed to
properly describe the data [32]
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Fig. 5. Phase-shift φππ of the ππ scattering amplitude. The
parameters employed for the one resonance graph are the same
as in Fig. 4. The curve with two resonances takes the val-
ues from the fit to the scattering amplitude, with the inputs
MV2(µ0) = 1550 MeV and f = 92.4 MeV.

not tried to determine the ρ(1450) pole, because it would
lie in a region which is not well described. We also give in
Table 1 the χPT coupling Lr

9(µ0) at the matching scale
µ0 = 770 MeV.

The VFF fit is sensitive to the product of couplings
FV2GV2/f2. One gets

FV2GV2/f2 = 0.007 ± 0.024+0.000
−0.050. (25)

For the range of GV2/f values quoted before, this implies
FV2/f = 0.02 ± 0.06+0.00

−0.08.
Modifications of the ρ(1450) inputs produce sizable

variations on the ρ(770) couplings. Thus, a better knowl-
edge of the ρ(1450) is needed to get more accurate values
of the ρ(770) parameters from a two resonance fit. The
results are consistent with the more precise determina-
tions from the fit with only one resonance, which we take
as our best estimates. Notice, that although the two res-
onance fit has a slightly better χ2, it leads to a worse
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. The smaller error intervals are the statistical un-

certainties given by MINUIT, the larger ones indicate the total
errors including systematic contributions

behavior at higher values of s outside the fitted region
(
√

s > 1.2 GeV).

5.1 Running of Lr
9(µ)

We have seen in Sect. 4, from a simplified theoretical anal-
ysis, that the parameter MV1(µ) depends on the χPT
renormalization scale adopted in the loop function B

r,(P)
22 ,

in such a way that the physically measurable VFF is scale
independent as it should. The dependence of MV1(µ) with
the scale was given by the equation

M2
V1

(µ2) − M2
V1

(µ1) =
M2

V1

64π2f2 ln
(

µ2
2

µ2
1

)
, (26)

as

Lr
9(µ2) − Lr

9(µ1) = δLr
9(µ2) − δLr

9(µ1)

= − 1
128π2 ln

(
µ2

2

µ2
1

)
.

The theoretical running of MV1(µ) induces a scale depen-
dence on the predicted value of Lr

9(µ) in (24). When the
phenomenological fit is performed at different values of
µ, the parameter MV1(µ) increases with µ. The other pa-
rameters of the fit remain essentially unaffected, i.e. they
suffer modifications much smaller than their errors. Vary-
ing the scale µ in the range between 0.5 GeV and 1.2 GeV,
the χ2 varies by less than 2%.

The fitted Lr
9(µ) results are compared in Fig. 6 to the

usually quoted values [2]. At the standard reference scale
µ0 = 770 MeV, we obtain

Lr
9(µ0) = (7.04 ± 0.05+0.19

−0.27) · 10−3, (27)

which considerably improves previous determinations [2,
33]. The systematic errors would increase to +0.19

−0.50 if we
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Fig. 7. Allowed region in the (RV, RA) plane. The shaded zone
on the left corresponds to the one resonance study, while the
dotted zone results from the analysis with two resonances

would have considered the fit with two resonances. The
lack of knowledge about the second multiplet parameters
introduces an extra uncertainty of the same order as the
one we have with only one resonance.

5.2 Large-NC relations

As we work at higher orders in 1/NC , our experimental
results have next-to-leading deviations from the LO val-
ues provided by the two short-distance QCD relations (7)
and (9). We are going to test now how well they are sat-
isfied. Typically, there should be a deviation from zero of
O(1/NC) in the VFF relation (with NC = 3 in physical
QCD), as the leading terms of the left-hand side of the
equality are FV1GV1/f2 ∼ 1. The deviation in the axial
form factor constraint should be of O(1/NC)·0.03, because
its leading terms are 2FV1GV1/M

2
V1

∼ F 2
V1

/M2
V1

∼ 0.03.
In Fig. 7, we have plotted the variables

RV ≡
{

1 −
∑

i

FViGVi

f2

}
· NC ,

RA ≡
{∑

i

2FViGVi − F 2
Vi

M2
Vi

}
· NC(0.03)−1, (28)

which have been normalized with appropriate factors so
that the expected deviations from zero are of O(1). We
have performed a scanning of the range of values for the
RχT couplings obtained from the VFF fits. We can see
in the figure that the separation from the large-NC QCD
relations is indeed of the expected order for both types of
fits (with one or two resonances). Thus, the short-distance
relations (7) and (9) are well satisfied, within the given
accuracy.
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6 Uncertainties from higher-order corrections

There exist many more diagrammatic contributions which
have not been included in our results. We show in Ap-
pendix C that, when the production of multiparticle states
is neglected, it is possible to define a generalized sum-
mation of Feynman diagrams with two-body topologies.
It makes use of a kernel function K, associated with the
two-body scattering amplitude, which incorporates those
contributions not included in our effective s-channel ver-
tex of Fig. 2b. The resulting VFF can be formally written
in a very compact form, given in (C.10). Making a 1/NC

expansion of the kernel K, one can easily check that our
s-channel result in (14) corresponds to the leading-order
approximation. The first correction originates from a sin-
gle resonance exchange in the t-channel, which induces a
subleading contribution of O(1/NC) to the kernel K. The
exchange of n meson fields contributes to the kernel at
O(1/Nn

C).
A general calculation of those higher-order corrections

is a formidable task. We know, however, that in the en-
ergy region we are studying the tree-level scattering in the
t-channel is much smaller than the one coming from the
s-channel, which seems to imply that they contribute as
a small perturbation. To estimate the size of those cor-
rections, we have analyzed the leading contribution from
the t-channel resonance exchange between the final pions.
According to the results in Appendix C, it induces a mul-
tiplicative correction into the VFF:

�F ≈
[
1 − Gt

1R
]−1[1 + Σ−1T s

LOΣ−1(192πBr
22)
]−1 �F0, (29)

where Gt
1R is the contribution from a single t-channel ex-

change.
The complete calculation of Gt

1R is rather involved,
since it makes it necessary to address the renormaliza-
tion of RχT. This is a very interesting issue, which we
plan to analyze in a future publication where a full anal-
ysis of the VFF at next-to-leading order in 1/NC will be
attempted. Here, we are only interested in its numeri-
cal impact on the results presented in the previous sec-
tions. For simplicity, we will study Gt

1R in the SU(2) the-
ory; i.e. we neglect the tiny contributions from diagrams
with kaons in the intermediate loop or in the final state
(Gt(π,K)

1R = Gt(K,π)
1R = Gt(K,K)

1R = 0). Moreover, we will work
in the chiral limit (mπ = 0).

Although there are several Feynman diagrams con-
tributing, we only need to consider the dominant one
where the current vertex (kµ

1 − kµ
2 ) produces a π−(k1)π0

(k2) pair, which is rescattered through a t-channel reso-
nance. This diagram generates the interesting non-
analytic contributions, plus a divergent local correction
which should combine with the local contributions from
the other diagrams to provide a physical finite result.
Since we are interested in the region s1/2 � 2MV (i.e.
we work below the two resonance cut), there are no addi-
tional sources of non-analytic terms. The local ambiguity
can be fixed to O(E4) by matching (29) with the known
χPT result. This requires Gt

1R ∼ O(E4). The exchange of

a vector resonance can be easily computed in this way.
One gets

Gt(π,π)
1V =

G2
V1

M2
V1

(4π)2f4 (30)

×
{[

Li2

(
1 +

q2

M2
V1

)
− Li2 (1)

](
2
M4

V1

q4 + 5
M2

V1

q2 + 2

)

+ ln
(

− q2

M2
V1

)(
2

M2
V1

q2 + 4 +
1
6

q2

M2
V1

)
− 2

M2
V1

q2

−
9
2

−
35
36

q2

M2
V1

}
.

Since Gt(π,π)
1V ∼ q4/M2

V, we can neglect the exchange of
higher-mass vector resonances. However, we will also con-
sider the t-channel exchange of scalar resonances from the
lightest multiplet, with a mass MS � 1 GeV [10,32] and
couplings cd, cm � f/2 [34]. It provides the contribution

Gt(π,π)
1S =

2c2
dM

2
S

(4π)2f4 (31)

×
{[

Li2

(
1 +

q2

M2
S

)
− Li2 (1)

](
2
M4

S

q4 +
M2

S

q2

)

+ ln
(

− q2

M2
S

)(
2

M2
S

q2 +
q2

6M2
S

)
− 2

M2
S

q2

−
1
2

+
q2

36M2
S

}
.

This result includes contributions from the singlet and the
octet scalars.

At energies below and around the ρ(770) peak, these
t-channel diagrams give a correction smaller than 5%,
which is within the uncertainties of the numerical anal-
yses performed in the previous section. However, above
E ∼ 1.2 GeV the vector contribution becomes larger than
10% and these topologies cannot be neglected any more.
This kind of diagrams turn out to be very important at
high energies.

We have repeated our previous fits to the VFF ALEPH
data, including the correction induced by

Gt(π,π)
1R = Gt(π,π)

1V + Gt(π,π)
1S .

The results of these fits are compatible with the ones ob-
tained before, showing that our former studies neglecting
crossed channels provide a good description within the
given precision.

7 Conclusions

A quantum field theory description of strong interactions
at energies around the hadronization scale, E ∼ 1 GeV,
requires appropriate non-perturbative tools. While a fun-
damental understanding of the confinement region of QCD
is still lacking, substantial phenomenological progress can
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be achieved through effective field theories incorporating
the relevant symmetries and dynamical degrees of free-
dom.

Using an effective chiral lagrangian which includes
pseudoscalars and explicit resonance fields, we have in-
vestigated the VFF and related I = J = 1 observables
in the interesting E ∼ 1 GeV energy range. The heavy
particles make the standard chiral counting in powers of
momenta useless, because their masses are of the same or-
der as the chiral symmetry breaking scale. Therefore, we
have adopted instead the more convenient large-NC ex-
pansion, which provides a powerful tool to organize the
calculation.

At the leading order in 1/NC , one gets an excellent
description of the VFF, far away from the resonance sin-
gularities. A proper understanding of the zone close to the
ρ(770) pole requires the inclusion of next-to-leading con-
tributions providing the non-zero width of the unstable
meson. The dressed propagator can be calculated through
a Dyson–Schwinger summation of the dominant s-channel
rescattering corrections, constructed from effective Gold-
stone vertices containing both the local χPT interaction
and the resonance-exchange contributions [13–16].

We have extended the Dyson–Schwinger summation of
effective vertices to handle problems with coupled chan-
nels in a systematic way, through the recurrence matrix
M. The inverse matrix (1 − M)−1, generated by final-
state interactions, provides the right unitarity structure
of the observables [17,29,30]. Moreover, with an SU(3)-
symmetric dynamics (the vertices contain only derivatives
and no quark masses), (1 − M)−1 acts just like a pure
number: [1 − tr{M}]−1. Hence, there is no mixing among
loops and the total decay width is simply given by a sum of
separate contributions from the different channels, which
correspond to the partial decay widths. An improved dia-
grammatic summation of more general two-body topolo-
gies has been given in Appendix C. It includes the smaller
t-channel corrections, through the 1/NC expansion of a
non-trivial interaction kernel K associated with the two
pseudoscalar scattering amplitude.

The Feynman loops fully determine the non-analytic
contributions, which are dictated by unitarity and chiral
symmetry. The local corrections, however, are functions
of the theoretically unknown couplings of the effective la-
grangian. They incorporate the short-distance dynamics
and take care of the regularization and renormalization
prescriptions adopted in the calculation. A significant re-
duction on the number of free parameters is obtained, re-
quiring the different amplitudes to satisfy the appropri-
ate QCD constraints at large momentum transfer [10,11].
In fact, a very successful prediction of the most relevant
O(E4) χPT couplings is obtained, under the reasonable
assumption that the lightest resonance multiplets give the
dominant effects at low energies [13]. We have resolved the
local ambiguities of the VFF, imposing the QCD short-
distance constraints and performing a low-energy match-
ing with the known O(E4) χPT result.

Working within the single resonance approximation
[13], we have obtained a good fit to the ALEPH τ → ντ2π

data [19], in the range 2mπ ≤ (q2)1/2 ≤ 1.2 GeV. At
the chiral renormalization scale µ0 = 770 MeV, the fit
gives the values shown in Table 1 for the main ρ parame-
ters. The corresponding resonance pole spole = (Mpole

ρ −
iΓ pole

ρ /2)2 in the second Riemann sheet is found to be at

Mpole
ρ = 764.1 ± 2.7+4.0

−2.5MeV,

Γ pole
ρ = 148.2 ± 1.9+1.7

−5.0MeV. (32)

We have achieved an improved determination of the χPT
coupling:

Lr
9(µ0) = (7.04 ± 0.05+0.19

−0.27) · 10−3, (33)

at µ0 = 770 MeV. Performing the phenomenological fit at
several scales µ, ones obtains the proper running of Lr

9(µ)
as prescribed by χPT.

To test the convergence of the 1/NC expansion, we
have analyzed the deviations between the fitted param-
eters and the corresponding theoretical large-NC predic-
tions [11]. The differences are found to be of the expected
O(1/NC) size, showing that the limit NC → ∞ provides
indeed an excellent description of the local chiral cou-
plings.

We have also investigated the corrections induced by
the tail of the ρ(1450) vector resonance at the higher side
of our energy range. The effects are sizable, but the sensi-
tivity is not good enough to make a precise determination
of its parameters or to disentangle the existence of sev-
eral higher-mass states. In order to do that, one would
need to study higher energies where other multiparticle
final states, beyond the two-body modes that we have an-
alyzed, become relevant. Moreover, a better calculation of
t-channel contributions would be needed, because they are
no longer small above 1.2 GeV.

To summarize, we have performed a detailed analysis
of the ρ(770) region, imposing all known theoretical con-
straints. The main ρ parameters and the χPT coupling
Lr

9(µ) have been determined with rather good precision.
More work is needed to extend the results at higher en-
ergies. It would also be very interesting to investigate in
a similar way the scalar sector, specially the pathological
I = J = 0 observables. We plan to address these issues in
forthcoming works.
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Appendix

A Feynman integrals

The loop function B
(P)
22 used in the text is defined through∫

dkd

i(2π)d

kµkν

(k2 − m2
P) [(q − k)2 − m2

P]
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≡ B
(P)
22 q2gµν + B

(P)
21 qµqν , (A.1)

with

B
(P)
22 =

1
192π2

[(
1 − 6m2

P

q2

)[
λ∞ + ln

(
m2

P

µ2

)]

+
8m2

P

q2 − 5
3

+ σ3
P ln

(
σP + 1
σP − 1

)]
, (A.2)

where λ∞ ≡ (2/(d − 4))µd−4 + γE − ln (4π) − 1, γE �
0.5772, µ is the renormalization scale and σP ≡ (1 −
4m2

P/q2)1/2 is the usual phase-space factor.
The real part of this Feynman integral is divergent,

but its imaginary part is finite and takes the value

Im
{

B
(P)
22

}
= − σ3

P

192π
θ(q2 − 4m2

P). (A.3)

The dilogarithm function which arises in the crossed-
channel calculations is defined as

Li2(y)=−
∫ 1

0

dx

x
ln (1 − xy)=−

∫ y

0

dx

x
ln (1 − x). (A.4)

It has an imaginary part given by

Im {Li2(y + iε)} = π ln (y)θ(y − 1). (A.5)

B Matrix relations

In the isospin limit, the matrix Σ−1T s
LOΣ−1 is propor-

tional to a dimension-one projector. Therefore, it obeys
the properties of a general dimension-one projector P and
a general matrix B:

P · B · P = λP, (B.1)

with λ =tr{P · B}. When the inverse matrix (1−P · B)−1

is multiplied by the eigenvector �u of P , or by the matrix
P , we obtain

(1 − P · B)−1
�u =

1
1 − λ

�u, (B.2)

(1 − P · B)−1
P =

1
1 − λ

P. (B.3)

In the study carried on before in Sect. 3, the matrices P
and B were Σ−1T s

LOΣ−1 and (−192πB22), respectively.
The matrix P · B was just M and the vector �u was �F0.

C Summation of general two-body topologies

The Dyson–Schwinger summation performed in Sect. 3 in-
corporates the dominant s-channel contributions. More-
over, the adopted matching procedure to the low-energy
χPT results takes care of tadpoles and local contribu-
tions, to the considered order in the momentum expansion.
There are, however, many more diagrammatic topologies

which have not been considered yet. Neglecting the small
corrections coming from multiparticle intermediate states,
it is possible to define a generalized summation of Feyn-
man diagrams with two-body topologies.

As we saw before, the effective vertex in Fig. 2a for
the vector current insertion producing a P−P 0 pair of
pseudoscalars shows the momentum structure:

�V µ
0 = (p1 − p2)ν

[
�F0(s)PT

µ
ν + �F ′

0(s)PL
µ
ν

]√
2, (C.1)

with Pµν
T = gµν − (qµqν/q2) and Pµν

L = qµqν/q2 the usual
transverse and longitudinal Lorentz projectors. In a sim-
ilar way, the effective vertex in Fig. 2b describing the s-
channel scattering of two pseudoscalars, when projected
on the P-wave (I = J = 1), takes the form

T0 = (p1 − p2)β

×
[
Σ−1T s

LO(s)Σ−1PT
α
β + Σ−1T ′s

LO(s)Σ−1PL
α
β

]
×
(

−48πi
q2

)
(k1 − k2)α, (C.2)

with p1, p2 (k1, k2) the outgoing (incoming) momenta. The
matrix T s

LO is the corresponding I = J = 1 partial-wave
scattering amplitude.

Let us define a general kernel K(m,n)(k1, k2, p1, p2) as-
sociated with the two-body scattering amplitude from (n)-
type pseudoscalars to (m)-type pseudoscalars. This kernel,
shown in Fig. C.1c, contains the identity operator (no scat-
tering) plus all interaction diagrams without intermediate
effective vertices (C.2).

Now let us connect the effective vector current inser-
tion �V µ

0 to the kernel K(m,n), as shown in Fig. C.1a. The
outgoing pseudoscalars from the kernel are joined again
into an effective scattering vertex (C.2). This generates
the dressed structure:

�V µ
1 = (p1 − p2)β

×
[
Σ−1T s

L0(s)Σ
−1PT

α
β + Σ−1T ′s

LO(s)Σ−1PL
α
β

]
× [Π(s)PT

ν
α + Π ′(s)PL

ν
α]

×
[
�F0(s)PT

µ
ν + �F ′

0(s)PL
µ
ν

]√
2, (C.3)

with the matrices Π(s) and Π ′(s) defined from the kernel
integral

Π(m,n)(s)PT
ν
α + Π ′(m,n)(s)PL

ν
α =

(
−48πi

q2

)
(C.4)

×
∫

dk′d

(2π)d

dkd

(2π)d
(k′

1 − k′
2)α∆(m)(k′2

1)∆
(m)(k′2

2)

× K(m,n)(k′
1, k

′
2, k1, k2)∆(n)(k2

1)∆
(n)(k2

2)(k1 − k2)ν ,

where ∆(m)(k2) is the propagator of a (m)-type pseu-
doscalar. Performing the trivial products of the Lorentz
projectors, the vector current matrix element with one in-
termediate kernel and ending into an effective scattering
vertex takes the form

�V µ
1 = (p1 − p2)ν
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Fig. C.1a–f. Basic pieces of the gen-
eral summation of two-body topologies.
The first row shows the general kernel
K, while the second one only includes
the contributions from ladder diagrams

×
[
Σ−1T s

LO(s)Σ−1Π(s) �F0(s)PT
µ
ν

+ Σ−1T ′s
LO(s)Σ−1Π ′(s) �F ′

0(s)PL
µ
ν

]√
2. (C.5)

When the outgoing pseudoscalars are both on the mass
shell the longitudinal term becomes zero.

We can easily iterate this algebraic procedure and con-
sider a series of N intermediate kernels and effective scat-
tering vertices, attached to the current insertion. The first
kernel is connected directly to �V µ

0 ; then it comes an effec-
tive scattering vertex T0, followed by another kernel, and
so on. The outgoing pseudoscalars are attached to the final
effective vertex. The resulting contribution to the VFF is
expressed by

�V µ
N = (p1 − p2)ν

[
(Σ−1T s

LOΣ−1Π)N �F0PT
µ
ν

+ (Σ−1T ′s
LOΣ−1Π ′)N �F ′

0PL
µ
ν

]√
2. (C.6)

Thus, the summation from N = 0 to infinity becomes

�V µ = (p1 − p2)ν
[
(1 − Σ−1T s

LOΣ−1Π)−1 �F0PT
µ
ν

+ (1 − Σ−1T ′s
LOΣ−1Π ′)−1 �F ′

0PL
µ
ν

]√
2. (C.7)

This sums all diagrams ending in an effective scatter-
ing vertex. Finally, we add the diagrams where the last
effective vertex is connected to the outgoing pseudoscalars
through the kernel. This extra contribution is given by the
form factor Gν of the factorized element (p1 − p2)ν ,

Gν
(m,n) = (p1 − p2)β

[
G(m,n)PT

ν
β + G′(m,n)PL

ν
β

]
=
∫

dkd

(2(2π)d
K(m,n)(p1, p2, k1, k2)

× ∆(n)(k2
1)∆

(n)(k2
2)(k1 − k2)ν , (C.8)

shown in Fig. C.1a, which we have separated into trans-
verse and longitudinal parts. The summation of all types
of diagrams gives then

�V µ = (p1 − p2)ν

×
[
G(1 − Σ−1T s

LOΣ−1Π)−1 �F0PT
µ
ν

+ G′(1 − Σ−1T ′s
LOΣ−1Π ′)−1 �F ′

0PL
µ
ν

]√
2. (C.9)

With the outgoing pseudoscalars being on-shell, the
resulting VFF takes the compact form

�F = G ·
(
1 − Σ−1T s

LOΣ−1Π
)−1 · �F0. (C.10)

The simplest kernel is the trivial direct connection
of the incoming and outgoing pseudoscalars (K=̇I). In
that case, the integral (C.4) reduces to the usual two-
propagator loop, Π = −192πB22, and G = I. One recov-
ers then the expression (14), obtained through a Dyson–
Schwinger summation of s-channel scattering vertices.
Equation (C.10) provides a systematic way of improving
the result, with the use of more complex kernels. The cal-
culation could be organized with the use of a 1/NC ex-
pansion of the kernel K; the trivial identity operator corre-
sponding to the lowest-order approximation in this expan-
sion. The first correction comes from a single resonance-
exchange in the t-channel, which induces a contribution
of O(1/NC) to the kernel. The exchange of n meson fields
would contribute at O(1/Nn

C).

C.1 Ladder diagrams

The calculation of higher-order diagrams with an arbitrary
number of resonances exchanged in the t-channel turns out
to be a very complicated problem as each loop is connected
to others. However the optical theorem relates the form
factor diagrams Fig. C.1d with the scattering amplitude
through ladder diagrams, Fig. C.1f, in the familiar way
[17,29,30]:

ImT t = T t · Σθ · T t∗, (C.11)
ImGt = Σ−1T tΣ−1 · Σ3

θ · Gt∗, (C.12)

implying

T t =
[
T t−1

LO + O(1) − iΣθ

]−1
, (C.13)

Gt =
[
1 + O(1/NC)

− i
(
Σ−1T t

LOΣ−1 + O(1/N2
C)
)
Σ3

θ

]−1
, (C.14)

where the terms O(1),O(1/NC) and O(1/N2
C) correspond

to NLO contributions in 1/NC , all of them real in the
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physical region when multiparticle channels are neglected.
The matrix T t

LO is the tree-level scattering amplitude
through a crossed resonance and the diagonal matrix Σθ

is just the phase-space matrix but with each σP multiplied
by a threshold factor θ(q2 − 4m2

P).
The basic behavior of these quantities is driven by

the tree-level term, as the crossed scattering amplitude
is tiny at the energies we are considering. It becomes im-
portant at very high energy, where the t-channel becomes
the dominant amplitude. Thus, the matching of Gt to the
lowest-order contribution plus the diagrams with only one
t-channel resonance exchange is a suitable assumption:

Gt �
[
1 − Gt

1R
]−1

, (C.15)

with Im Gt
1R = Σ−1T t

LOΣ−1 · Σ3
θ .
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G. Senjanović, A. Yu. Smirnov, The ICTP Series in Theo-
retical Physics – Vol. 16 (World Scientific, Singapore 2000)
pp. 53–102, hep-ph/0001118

2. A. Pich, Proceedings Les Houches Summer School of The-
oretical Physics, Probing the Standard Model of Particle
Interactions (Les Houches, France, 28 July–5 September
1997), edited by R. Gupta et al. (Elsevier Science, Ams-
terdam 1999), Vol. II, 949-1050, hep-ph/9806303
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